On the flat remainder in normal forms of families of analytic planar saddles

نویسنده

  • Patrick Bonckaert
چکیده

We give an explicit expression for the (finitely) flat remainder after analytic normal form reduction of a family of planar saddles of diffeomorphisms or vector fields. We distinguish between a rational or irrational ratio of the moduli of the eigenvalues at the saddle for a certain value of the parameter.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the M-polynomial of planar chemical graphs

Let $G$ be a graph and let $m_{i,j}(G)$, $i,jge 1$, be the number of edges $uv$ of $G$ such that ${d_v(G), d_u(G)} = {i,j}$. The $M$-polynomial of $G$ is $M(G;x,y) = sum_{ile j} m_{i,j}(G)x^iy^j$. With $M(G;x,y)$ in hands, numerous degree-based topological indices of $G$ can be routinely computed. In this note a formula for the $M$-polynomial of planar (chemical) graphs which have only vertices...

متن کامل

Computational studies of planar, tubular and conical forms of silicon nanostructures

Density functional theory (DFT) calculations were performed to investigate the properties of planar, tubular and conical forms of silicon nanostructures. The evaluated parameters including averaged bond lengths, binding energies, gap energies and dipole moments were then evaluated for the optimized models of study. The results indicated that the bond lengths between silicon atoms are different ...

متن کامل

Computational studies of planar, tubular and conical forms of silicon nanostructures

Density functional theory (DFT) calculations were performed to investigate the properties of planar, tubular and conical forms of silicon nanostructures. The evaluated parameters including averaged bond lengths, binding energies, gap energies and dipole moments were then evaluated for the optimized models of study. The results indicated that the bond lengths between silicon atoms are different ...

متن کامل

Robust normal forms for saddles of analytic vector fields

The aim of this paper is to introduce a technique for describing trajectories of systems of ordinary differential equations (ODEs) passing near saddle-fixed points. In contrast to classical linearization techniques, the methods of this paper allow for perturbations of the underlying vector fields. This robustness is vital when modelling systems containing small uncertainties, and in the develop...

متن کامل

A pointfree version of remainder preservation

Recall that a continuous function $fcolon Xto Y$ between Tychonoff spaces is proper if and only if the Stone extension $f^{beta}colon beta Xtobeta Y$ takes remainder to remainder, in the sense that $f^{beta}[beta X-X]subseteq beta Y-Y$. We introduce the notion of ``taking remainder to remainder" to frames, and, using it, we define a frame homomorphism $hcolon Lto M$ to be $beta$-proper, $lambd...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008